Preferential expression of the third immunoglobulin-like domain of K-sam product provides keratinocyte growth factor-dependent growth in carcinoma cell lines.
نویسندگان
چکیده
Previously, we identified an amplified gene in a stomach cancer cell line, KATO-III, and designated it K-sam. This gene was later found to be identical with a gene for a receptor tyrosine kinase, bek/FGFR2. One of the characteristics of the K-sam gene is structural diversity of its transcripts; K-sam complementary DNA (cDNA) cloned from human brain (K-sam-I) has a completely different sequence at the third extracellular immunoglobulin-like domain as compared to that of the K-sam cDNA derived from KATO-III cells (K-sam-II). Recent study has revealed that this difference signifies a differential ligand affinity; the receptor encoded by the K-sam-I cDNA has a high affinity for basic fibroblast growth factor (bFGF), while the K-sam-II cDNA corresponds to a receptor with the high affinity for keratinocyte growth factor (KGF). Reverse transcription-polymerase chain reaction and RNA blot analysis showed that the K-sam-II-type transcript was present in carcinoma cell lines but not in any of the sarcoma cell lines examined. The K-sam-I-type transcript was expressed in both carcinoma and sarcoma cell lines. Furthermore, KGF enhanced the DNA synthesis of the esophageal cancer cells, TE-1, in a dose-dependent manner, while the effect of bFGF was not substantial. In contrast, the glioblastoma cell line, A-172, that expressed the bFGF receptor showed a mitogenic response to bFGF but not to KGF. These data suggest that KGF is a growth factor used preferentially in cancer cells, and this preference is based on the presence of the K-sam-II-type receptor in carcinoma cells but not in sarcoma cells due to alternative splicing.
منابع مشابه
Preferential Expression of the Third Immunoglobulin-like Domain of K-sam Product Provides Keratinocyte Growth Factor-dependent Growth in Carcinoma Cell Lines
Previously, we identified an amplified gene in a stomach cancer cell line, KATO-III, and designated it K-sam. This gene was later found to be identical with a gene for a receptor tyrosine kinase, bek/FGFR2. One of the characteristics of the K.sam gene is structural diversity of its transcripts; K-sam complementary DNA (cDNA) cloned from human brain (K-sam-I) has a completely different sequence ...
متن کاملFactor - dependent Growth in Carcinoma Cell Lines Product Provides Keratinocyte Growth sam Domain of K - Preferential Expression of the Third Immunoglobulin - like Updated
Previously, we identified an amplified gene in a stomach cancer cell line, KATO-III, and designated it K-sam. This gene was later found to be identical with a gene for a receptor tyrosine kinase, bek/FGFR2. One of the characteristics of the K.sam gene is structural diversity of its transcripts; K-sam complementary DNA (cDNA) cloned from human brain (K-sam-I) has a completely different sequence ...
متن کاملImmunohistochemical Detection of K-sam Protein in Stomach Cancer1
The K-sam gene, originally isolated as an amplified gene from the stomach cancer cell line KATO-Ill, is characterized by its preferential amplification in the undifferentiated type (diffuse type) of stomach cancer and encodes one of the receptors for heparin-binding growth factors or fibroblast growth factors. The K-sam gene has been isolated by different methods and has been designated BEK, TK...
متن کاملFunctional and Molecular Characterization of C91S Mutation in the Second Epidermal Growth Factor-like Domain of Factor VII
Background: Coagulation Factor VII is a vitamin K-dependent serine protease which has a pivotal role in the initiation of the coagulation cascade. The congenital Factor VII deficiency is a recessive hemorrhagic disorder that occurs due to mutations of F7 gene. In the present study C91S (p.C91S) substitution was detected in a patient with FVII deficiency. This mutation has not b...
متن کاملANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 54 2 شماره
صفحات -
تاریخ انتشار 1994